Week 3 - Basic Impulse and Unit Functions
The Unit Step Function
The continuous-time unit step function $u(t)$ is defined as:
\[u(t)={\begin{cases}1,&t\geq 0\\0,&otherwise\end{cases}}\]
- Discontinuous at $t=0$
- Differentiation:
\[\frac{du}{dt}={\begin{cases}0,&t\neq 0\\\infin,& t=0 \end{cases}}\]
Operations with the Unit Step Function
\[u(t-t_0) = {\begin{cases}1,&t\geq t_0\\0,&otherwise\end{cases}}\]
\[p(t)=u(t)-u(t-t_0)\]
-
- This pulse has finite energy
-
- It has many applications, e.g. binary transmission